「気体分離膜の流体力学計算」

東京大学大学院工学系研究科 高羽洋充

takaba@chemsys.t.u-tokyo.ac.jp

H₂ Production by Steam Reforming

- 🗆 🗵

Concentration Polarization

 $\alpha = \frac{J_{H2}}{J_{CO}}$

$$J_{H2} = A\phi_{H2}(Ph_{H2} - Pl_{H2})$$
$$J_{CO} = A\phi_{CO}(Ph_{CO} - Pl_{CO})$$

Objective

<u>Development of CFD simulator to design a</u> <u>gas separation module and check the validity</u> <u>for concentration polarization prediction</u>

<u>Outline</u>

- **1. Introduction of theory**
- 2. Comparison with the ideal flow calculation result (plug flow model) to test the validation of CFD
- 3. Comparison with experimental result to investigate the concentration polarization effect

Theory in CFD Simulator

Calculation condition

MODEL \rightarrow H₂ separation from H₂/CO gas mixture

Θ (non-dimensional parameter)

(Membrane Performance)

= $f(surface area(S), permeance (P_{H2}), \Delta P, flow volume(F), height of module(d))$

<u>Plug flow model</u> \rightarrow Separation factor and flux are as a function of only Θ !

Calculation condition: $F [m^3/s]$

K _{H2}	Θ=2.0	Θ=1.0	Θ=0.1	Θ=0.01	Θ=0.001	Θ=0.0001
10-5	1.406x10 ⁻³	2.812x10 ⁻³	2.812×10 ⁻²	2.812x10 ⁻¹	2.812x10 ⁰	2.812x10 ¹
10-6	1.406x10 ⁻⁴	2.812×10 ⁻⁴	2.812x10 ⁻³	2.812x10 ⁻²	2.812x10 ⁻¹	2.812×10 ⁰
5x10 ⁻⁷	7.03x10 ⁻⁵	1.406x10 ⁻⁴	1.406x10 ⁻³	1.406x10 ⁻²	1.406x10 ⁻¹	1.406x10 ⁰
10-7	1.406x10 ⁻⁵	2.812×10 ⁻⁵	2.812x10 ⁻⁴	2.812x10 ⁻³	2.812x10 ⁻²	2.812×10 ⁻¹
10-8	1.406x10 ⁻⁶	2.812x10 ⁻⁶	2.812x10 ⁻⁵	2.812x10 ⁻⁴	2.812x10 ⁻³	2.812x10 ⁻²
10-9	1.406x10 ⁻⁷	2.812×10 ⁻⁷	2.812x10 ⁻⁶	2.812x10 ⁻⁵	2.812x10 ⁻⁴	2.812x10 ⁻³

$$\alpha(K_{\rm H2}/K_{\rm CO}) = 1000$$

CFD Result (flow volume; $F = 2.812 \times 10^{-8} \text{ m}^{3/\text{s}}$)

 $KH_2 = 1.0 \times 10^{-8}$ $KH_2 = 1.0 \times 10^{-6}$ **Pressure drop** Pressure drop Partial pressure of H₂ **Partial pressure of H₂** Partial pressure of CO Partial pressure of CO

CFD vs PFM $-y_{H2}$ -

When permeance of H_2 is smaller than 1×10^{-6} mol/m²sPa, CFD agrees with PFM.

CFD vs PFM $-R_{H2}$ -

When permeance of H_2 is smaller than 1×10^{-6} mol/m²sPa, CFD agrees well with PFM.

CFD Model for Polarization

K. Haraya et al., *Sep. Sci. Tech.,* 22 (1987) 1425.

Hydrogen and carbon monoxide mixture gas

 K_{H_2} (mol/s m² Pa) = 2.67 × 10⁻⁶

 $K_{\rm H_2}/K_{\rm CO} = 3.74$

 $P_{\rm h}$ (MPa) = 1.1

 $P_{\rm I}$ (MPa) = 0.5-0.6

 $D(\text{cm}^2/\text{s}) = 1.06 \text{ at } 1.1 \text{ MPa}$

Sc = 0.24

Feed (cm/s) = 2.5, 3.75, 5.0 Jv (cm/s) = 0.4

Partial Pressure Distribution

Partial Pressure Distribution

 $P(H_2)$ along flow direction Feed velocity is 5 cm/s.

Change of $P(H_2)$ for different feed Velocity. Position of flow direction Is 0.12 cm.

Comparison with experiment

Conclusion

CFD simulator was developed and tested using a model based on the separation process of a hydrogen/carbon monoxide gas mixture in the steam reforming process.

- 1. CFD results agree with the PFM results when the permeance of H_2 becomes smaller than 1×10^{-7} mol/m²sPa.
- 2. When the permeance of H_2 is larger than 1×10^{-6} mol/m²sPa, the volume flux and selectivity decreases.
- 3. The concentration polarization observed in the CFD simulation results compared well with the experimental results.

Acknowledgement

This work has been supported by NEDO as a part of the R&D Project for High Efficiency Hydrogen Production/Separation System using Ceramic Membrane promoted by METI, Japan.